乐鱼体育官网汇聚全球体育资讯,提供高端的在线娱乐服务。
rss
    0

    乐鱼体育官网-100T碾压CLG,Oner惊艳世界

    2025.10.07 | 乐鱼体育 | 27次围观

      2000年早期,Robbie Allen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,Youtube还不是很普遍,Quora、 Twitter和播客同样用者甚少。

      在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!

      为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,你将会对人工智能和机器学习有一个基本的认知。

      资源目录:

      □ 知名研究者

      □ 研究机构

      □ 视频课程

      □ YouTube

      □ 博客

      □ 媒体作家

      □ 书籍

      □ Quora主题栏

      □ Reddit

      □ Github库

      □ 播客

      □ 实事通讯媒体

      □ 会议

      □ 论文

      研究者

      大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,维基百科链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。

      ■Sebastian Thrun

      个人官网:

      https://robots.stanford.edu/

      Wikipedia:

      https://en.wikipedia.org/wiki/Sebastian_Thrun

      Twitter:

      https://twitter.com/SebastianThrun

      Google Scholar:

      https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao

      Quora:

      https://www.quora.com/profile/Sebastian-Thrun

      Reddit AMA:

      https://www.reddit.com/r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/

      ■Yann LeCun

      个人官网:

      https://yann.lecun.com/

      Wikipedia:

      https://en.wikipedia.org/wiki/Sebastian_Thrun

      Twitter:

      https://twitter.com/ylecun?

      Google Scholar:

      https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en

      Quora:

      https://www.quora.com/profile/Yann-LeCun

      Reddit AMA:

      https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

      ■Nando de Freitas

      个人官网:

      https://www.cs.ubc.ca/~nando/

      Wikipedia:

      https://en.wikipedia.org/wiki/Nando_de_Freitas

      Twitter:

      https://twitter.com/NandoDF

      Google Scholar:

      https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en

      Reddit AMA:

      https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

      ■Andrew Ng

      个人官网:

      https://www.andrewng.org/

      Wikipedia:

      https://en.wikipedia.org/wiki/Andrew_Ng

      Twitter:

      https://twitter.com/AndrewYNg

      Google Scholar:

      https://scholar.google.com/citations?use

      Quora:

      https://www.quora.com/profile/Andrew-Ng"

      Reddit AMA:

      https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

      ■Daphne Koller

      个人官网:

      https://ai.stanford.edu/users/koller/

      Wikipedia:

      https://en.wikipedia.org/wiki/Daphne_Koller

      Twitter:

      https://twitter.com/DaphneKoller?lang=en

      Google Scholar:

      https://scholar.google.com/citations?user=5Iqe53IAAAAJ

      Quora:

      https://www.quora.com/profile/Daphne-Koller

      Quora Session:

      https://www.quora.com/session/Daphne-Koller/1

      ■Adam Coates

      个人官网:

      https://cs.stanford.edu/~acoates/

      Twitter:

      https://twitter.com/adampaulcoates

      Google Scholar:

      https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en"

      Reddit AMA:

      https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

      ■Jürgen Schmidhuber

      个人官网:

      https://people.idsia.ch/~juergen/

      Wikipedia:

      https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber

      Google Scholar:

      https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en

      Reddit AMA:

      https://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/

      ■Geoffrey Hinton

      Wikipedia:

      https://en.wikipedia.org/wiki/Geoffrey_Hinton

      Google Scholar:

      https://www.cs.toronto.edu/~hinton/

      Reddit AMA:

      https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/

      ■Terry Sejnowski

      个人官网:

      https://www.salk.edu/scientist/terrence-sejnowski/

      Wikipedia:

      https://en.wikipedia.org/wiki/Terry_Sejnowski

      Twitter:

      https://twitter.com/sejnowski?lang=en

      Google Scholar:

      https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en

      Reddit AMA:

      https://www.reddit.com/r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/

      ■Michael Jordan

      个人官网:

      https://people.eecs.berkeley.edu/~jordan/

      Wikipedia:

      https://en.wikipedia.org/wiki/Michael_I._Jordan

      Google Scholar:

      https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en"

      Reddit AMA:

      https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/

      ■Peter Norvig

      个人官网:

      https://norvig.com/

      Wikipedia:

      https://en.wikipedia.org/wiki/Peter_Norvig

      Google Scholar:

      https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en

      Reddit AMA:

      https://www.reddit.com/r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/

      ■Yoshua Bengio

      个人官网:

      https://www.iro.umontreal.ca/~bengioy/yoshua_en/

      Wikipedia:

      https://en.wikipedia.org/wiki/Yoshua_Bengio

      Google Scholar:

      https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en

      Quora:

      https://www.quora.com/profile/Yoshua-Bengio

      Reddit AMA:

      https://www.reddit.com/r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/

      ■Ina Goodfellow

      个人官网:

      https://www.iangoodfellow.com/

      Wikipedia:

      https://en.wikipedia.org/wiki/Ian_Goodfellow

      Twitter:

      https://twitter.com/goodfellow_ian

      Google Scholar:

      https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en

      Quora:

      https://www.quora.com/profile/Ian-Goodfellow

      Quora Session:

      https://www.quora.com/session/Ian-Goodfellow/1

      ■Andrej Karpathy

      个人官网:

      https://karpathy.github.io/

      Twitter:

      https://twitter.com/karpathy

      Google Scholar:

      https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en

      Quora:

      https://www.quora.com/profile/Andrej-Karpathy

      Quora Session:

      https://www.quora.com/session/Andrej-Karpathy/1

      ■Richard Socher

      个人官网:

      https://www.socher.org/

      Twitter:

      https://twitter.com/RichardSocher

      Google Scholar:

      https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en

      Interview:

      https://www.kdnuggets.com/2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html

      ■Demis Hassabis

      个人官网:

      https://demishassabis.com/

      Wikipedia:

      https://en.wikipedia.org/wiki/Demis_Hassabis

      Twitter:

      https://twitter.com/demishassabis

      Google Scholar:

      https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en

      Interview:

      https://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/

      ■Christopher Manning

      个人官网:

      https://nlp.stanford.edu/~manning/

      Twitter:

      https://twitter.com/chrmanning

      Google Scholar:

      https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"

      ■Fei-Fei Li

      个人官网:

      https://vision.stanford.edu/people.html

      Wikipedia:

      https://en.wikipedia.org/wiki/Fei-Fei_Li

      Twitter:

      https://twitter.com/drfeifei

      Google Scholar:

      https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"

      Ted Talk:

      https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/tran?language=en

      ■François Chollet

      个人官网:

      https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

      Twitter:

      https://twitter.com/fchollet

      Google Scholar:

      https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

      Quora:

      https://www.quora.com/profile/Fran%C3%A7ois-Chollet

      Quora Session:

      https://www.quora.com/session/Fran%C3%A7ois-Chollet/1

      ■Dan Jurafsky

      个人官网:

      https://web.stanford.edu/~jurafsky/

      Wikipedia:

      https://en.wikipedia.org/wiki/Daniel_Jurafsky

      Twitter:

      https://twitter.com/jurafsky

      Google Scholar:

      https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en

      ■Oren Etzioni

      个人官网:

      https://allenai.org/team/orene/

      Wikipedia:

      https://en.wikipedia.org/wiki/Oren_Etzioni

      Twitter:

      https://twitter.com/etzioni

      Google Scholar:

      https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en

      Quora:

      https://scholar.google.com/citations?user

      Reddit AMA:

      https://www.reddit.com/r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/

      机 构

      网络上有大量的知名机构致力于推进人工智能领域的研究和发展。

      以下列出的是同时拥有官方网站/博客和推特账号的机构。

      ■OpenAI

      官网:https://openai.com/

      Twitter:https://twitter.com/OpenAI

      ■DeepMind

      官网:https://deepmind.com/

      Twitter:https://twitter.com/DeepMindA

      ■Google Research

      官网:https://research.googleblog.com/

      Twitter:https://twitter.com/googleresearch

      ■AWS AI

      官网:https://aws.amazon.com/blogs/ai/

      Twitter:https://twitter.com/awscloud

      ■Facebook AI Research

      官网:https://research.fb.com/category/facebook-ai-research-fair/

      ■Microsoft Research

      官网:https://www.microsoft.com/en-us/research/

      Twitter:https://twitter.com/MSFTResearch

      ■Baidu Research

      官网:https://research.baidu.com/

      Twitter:https://twitter.com/baiduresearch?lang=en

      ■IntelAI

      官网:https://software.intel.com/en-us/ai

      Twitter:https://twitter.com/IntelAI

      ■AI2

      官网:https://allenai.org/

      Twitter:https://twitter.com/allenai_org

      ■Partnership on AI

      官网:https://www.partnershiponai.org/

      Twitter:https://twitter.com/partnershipai

      视频课程

      以下列出的是一些免费的视频课程和教程。

      ■Coursera

      — Machine Learning (Andrew Ng):

      https://www.coursera.org/learn/machine-learning#syllabus

      ■Coursera

      — Neural Networks for Machine Learning (Geoffrey Hinton):

      https://www.coursera.org/learn/neural-networks

      ■Udacity

      — Intro to Machine Learning (Sebastian Thrun):

      https://classroom.udacity.com/courses/ud120

      ■Udacity

      — Machine Learning (Georgia Tech):

      https://www.udacity.com/course/machine-learning--ud262

      ■Udacity

    100T碾压CLG,Oner惊艳世界

      ——Deep Learning (Vincent Vanhoucke):

      https://www.udacity.com/course/deep-learning--ud730

      ■Machine Learning (mathematicalmonk):

      https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA

      ■Practical Deep Learning For Coders

      ——Jeremy Howard & Rachel Thomas:

      https://course.fast.ai/start.html

      ■Stanford CS231n

      ——Convolutional Neural Networks for Visual Recognition (Winter 2016) :

      https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA

      (class link):https://cs231n.stanford.edu/

      ■Stanford CS224n

      ——Natural Language Processing with Deep Learning (Winter 2017) :

      https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

      (class link):https://web.stanford.edu/class/cs224n/

      ■Oxford Deep NLP 2017 (Phil Blunsom et al.):

      https://github.com/oxford-cs-deepnlp-2017/lectures

      ■Reinforcement Learning (David Silver):

      https://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

      ■Practical Machine Learning Tutorial with Python (sentdex):

      https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM

      YouTube

      以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:

      ■sentdex

      (225K subscribers, 21M views):

      https://www.youtube.com/user/sentdex

      ■Artificial Intelligence A.I.

      (7M views):

      https://www.youtube.com/channel/UC-XbFeFFzNbAUENC8Ofpn3g

      ■Siraj Raval

      (140K subscribers, 5M views):

      https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

      ■Two Minute Papers

      (60K subscribers, 3.3M views):

      https://www.youtube.com/user/keeroyz

      ■DeepLearning.TV

      (42K subscribers, 1.7M views):

      https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ

      ■Data School

      (37K subscribers, 1.8M views):

      https://www.youtube.com/user/dataschool

      ■Machine Learning Recipes with Josh Gordon

      (324K views):

      https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal

      ■Artificial Intelligence — Topic

      (10K subscribers):

      https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ

      ■Allen Institute for Artificial Intelligence (AI2)

      (1.6K subscribers, 69K views):

      https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ

      ■Machine Learning at Berkeley

      (634 subscribers, 48K views):

      https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg

      ■Understanding Machine Learning — Shai Ben-David

      (973 subscribers, 43K views):

      https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q

      ■Machine Learning TV

      (455 subscribers, 11K views):

      https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw

      博 客

      ■Andrej Karpathy

      博客:https://karpathy.github.io/

      Twitter:https://twitter.com/karpathy

      ■i am trask

      博客:https://iamtrask.github.io/

      Twitter:https://twitter.com/iamtrask

      ■Christopher Olah

      博客:https://colah.github.io/

      Twitter:https://twitter.com/ch402

      ■Top Bots

      博客:https://www.topbots.com/

      Twitter:https://twitter.com/topbots

      ■WildML

      博客:https://www.wildml.com/

      Twitter:https://twitter.com/dennybritz

      ■Distill

      博客:https://distill.pub/

      Twitter:https://twitter.com/distillpub

      ■Machine Learning Mastery

      博客:https://machinelearningmastery.com/blog/

      Twitter:https://twitter.com/TeachTheMachine

      ■FastML

      博客:https://fastml.com/

      Twitter:https://twitter.com/fastml_extra

      ■Adventures in NI

      博客:https://joanna-bryson.blogspot.de/

      Twitter:https://twitter.com/j2bryson

      ■Sebastian Ruder

      博客:https://sebastianruder.com/

      Twitter:https://twitter.com/seb_ruder

      ■Unsupervised Methods

      博客:https://unsupervisedmethods.com/

      Twitter:https://twitter.com/RobbieAllen

      ■Explosion

      博客:https://explosion.ai/blog/

      Twitter:https://twitter.com/explosion_ai

      ■Tim Dettwers

      博客:https://timdettmers.com/

      Twitter:https://twitter.com/Tim_Dettmers

      ■When trees fall...

      博客:https://blog.wtf.sg/

      Twitter:https://twitter.com/tanshawn

      ■ML@B

      博客:https://ml.berkeley.edu/blog/

      Twitter:https://twitter.com/berkeleyml

      媒体作家

      以下是一些人工智能领域方向顶尖的媒体作家。

      ■Robbie Allen:

      https://medium.com/@robbieallen

      ■Erik P.M. Vermeulen:

      https://medium.com/@erikpmvermeulen

      ■Frank Chen:

      https://medium.com/@withfries2

      ■azeem:

      https://medium.com/@azeem

      ■Sam DeBrule:

      https://medium.com/@samdebrule

      ■Derrick Harris:

      https://medium.com/@derrickharris

      ■Yitaek Hwang:

      https://medium.com/@yitaek

      ■samim:

      https://medium.com/@samim

      ■Paul Boutin:

      https://medium.com/@Paul_Boutin

      ■Mariya Yao:

      https://medium.com/@thinkmariya

      ■Rob May:

      https://medium.com/@robmay

      ■Avinash Hindupur:

      https://medium.com/@hindupuravinash

      书 籍

      以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。

      ——机器学习

      ■Understanding Machine Learning From Theory to Algorithms:

      https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

      ■Machine Learning Yearning:

      https://www.mlyearning.org/

      ■A Course in Machine Learning:

      https://ciml.info/

      ■Machine Learning:

      https://www.intechopen.com/books/machine_learning

      ■Neural Networks and Deep Learning:

      https://neuralnetworksanddeeplearning.com/

      ■Deep Learning Book:

      https://www.deeplearningbook.org/

      ■Reinforcement Learning: An Introduction:

      https://incompleteideas.net/sutton/book/the-book-2nd.html

      ■Reinforcement Learning:

      https://www.intechopen.com/books/reinforcement_learning

      ——自然语言处理

      ■Speech and Language Processing (3rd ed. draft):

      https://web.stanford.edu/~jurafsky/slp3/

      ■Natural Language Processing with Python:

      https://www.nltk.org/book/

      ■An Introduction to Information Retrieval:

      https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

      ——数 学

      ■Introduction to Statistical Thought:

      https://people.math.umass.edu/~lavine/Book/book.pdf

      ■Introduction to Bayesian Statistics:

      https://www.stat.auckland.ac.nz/~brewer/stats331.pdf

      ■Introduction to Probability:

      https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf

      ■Think Stats: Probability and Statistics for Python programmers:

      https://greenteapress.com/wp/think-stats-2e/

      ■The Probability and Statistics Cookbook:

      https://statistics.zone/

      ■Linear Algebra:

      https://joshua.smcvt.edu/linearalgebra/book.pdf

      ■Linear Algebra Done Wrong:

      https://www.math.brown.edu/~treil/papers/LADW/book.pdf

      ■Linear Algebra, Theory And Applications:

      https://math.byu.edu/~klkuttle/Linearalgebra.pdf

      ■Mathematics for Computer Science:

      https://courses.csail.mit.edu/6.042/spring17/mcs.pdf

      ■Calculus:

      https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf

      ■Calculus I for Computer Science and Statistics Students:

      https://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf

      Quora

      Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,你可以订阅如果你想跟进这些内容。

      ■Computer-Science (5.6M followers):

      https://www.quora.com/topic/Computer-Science

      ■Machine-Learning (1.1M followers):

      https://www.quora.com/topic/Machine-Learning

      ■Artificial-Intelligence (635K followers):

      https://www.quora.com/topic/Artificial-Intelligence

      ■Deep-Learning (167K followers):

      https://www.quora.com/topic/Deep-Learning

      ■Natural-Language-Processing (155K followers):

      https://www.quora.com/topic/Natural-Language-Processing

      ■Classification-machine-learning (119K followers):

      https://www.quora.com/topic/Classification-machine-learning

      ■Artificial-General-Intelligence (82K followers)

      https://www.quora.com/topic/Artificial-General-Intelligence

      ■Convolutional-Neural-Networks-CNNs (25K followers):

      https://www.quora.com/topic/Artificial-General-Intelligence

      ■Computational-Linguistics (23K followers):

      https://www.quora.com/topic/Computational-Linguistics

      ■Recurrent-Neural-Networks (17.4K followers):

      https://www.quora.com/topic/Recurrent-Neural-Networks

      Reddit

      Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。

      ■/r/MachineLearning (111K readers):

      https://www.reddit.com/r/MachineLearning

      ■/r/robotics/ (43K readers):

      https://www.reddit.com/r/robotics/

      ■/r/artificial (35K readers):

      https://www.reddit.com/r/artificial

      ■/r/datascience (34K readers):

      https://www.reddit.com/r/datascience

      ■/r/learnmachinelearning (11K readers):

      https://www.reddit.com/r/learnmachinelearning

      ■/r/computervision (11K readers):

      https://www.reddit.com/r/computervision

      ■/r/MLQuestions (8K readers):

      https://www.reddit.com/r/MLQuestions

      ■/r/LanguageTechnology (7K readers):

      https://www.reddit.com/r/LanguageTechnology

      ■/r/mlclass (4K readers):

      https://www.reddit.com/r/mlclass

      ■/r/mlpapers (4K readers):

      https://www.reddit.com/r/mlpapers

      Github

      人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。

      ■Machine Learning (6K repos):

      https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93

      ■Deep Learning (3K repos):

      https://github.com/search?q=topic%3Adeep-learning&type=Repositories

      ■Tensorflow (2K repos):

      https://github.com/search?q=topic%3Atensorflow&type=Repositories

      ■Neural Network (1K repos):

      https://github.com/search?q=topic%3Atensorflow&type=Repositories

      ■NLP (1K repos):

      https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories

      播 客

      对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。

      ■ConcerningAI

      官网:https://concerning.ai/

      iTunes:https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211

      ■This Week in Machine Learning and AI

      官网:https://twimlai.com/

      iTunes:https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2

      ■The AI Podcast

      官网:https://blogs.nvidia.com/ai-podcast/

      iTunes:https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811

      ■Data Skeptic

      官网:https://dataskeptic.com/

      iTunes:https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705

      ■Linear Digressions

      官网:https://itunes.apple.com/us/podcast/linear-digressions/id941219323

      iTunes:https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2

      ■Partially Dervative

      官网:https://partiallyderivative.com/

      iTunes:https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2

      ■O'Reilly Data Show

      官网:https://radar.oreilly.com/tag/oreilly-data-show-podcast

      iTunes:https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220

      ■Learning Machines 101

      官网:https://www.learningmachines101.com/

      iTunes:https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2

      ■The Talking Machines

      官网:https://www.thetalkingmachines.com/

      iTunes:https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2

      ■Artificial Intelligence in Industry

      官网:https://techemergence.com/

      iTunes:https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2

      ■Machine Learning Guide

      官网:https://ocdevel.com/podcasts/machine-learning

      iTunes:https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2

      时事通讯媒体

      如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。

      ■The Exponential View:

      https://www.getrevue.co/profile/azeem

      ■AI Weekly:

      https://aiweekly.co/

      ■Deep Hunt:

      https://deephunt.in/

      ■O’Reilly Artificial Intelligence Newsletter:

      https://www.oreilly.com/ai/newsletter.html

      ■Machine Learning Weekly:

      https://mlweekly.com/

      ■Data Science Weekly Newsletter:

      https://www.datascienceweekly.org/

      ■Machine Learnings:

      https://subscribe.machinelearnings.co/

      ■Artificial Intelligence News:

      https://aiweekly.co/

      ■When trees fall…:

      https://meetnucleus.com/p/GVBR82UWhWb9

      ■WildML:

      https://meetnucleus.com/p/PoZVx95N9RGV

      ■Inside AI:

      https://inside.com/technically-sentient

      ■Kurzweil AI:

      https://www.kurzweilai.net/create-account

      ■Import AI:

      https://jack-clark.net/import-ai/

      ■The Wild Week in AI:

      https://www.getrevue.co/profile/wildml

      ■Deep Learning Weekly:

      https://www.deeplearningweekly.com/

      ■Data Science Weekly:

      https://www.datascienceweekly.org/

      ■KDnuggets Newsletter:

      https://www.kdnuggets.com/news/subscribe.html?qst

      会 议

      随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。

      ——学术会议

      ■NIPS (Neural Information Processing Systems):

      https://nips.cc/

      ■ICML (International Conference on Machine Learning):

      https://2017.icml.cc

      ■KDD (Knowledge Discovery and Data Mining):

      https://www.kdd.org/

      ■ICLR (International Conference on Learning Representations):

      https://www.iclr.cc/

      ACL (Association for Computational Linguistics):

      https://acl2017.org/

      ■EMNLP (Empirical Methods in Natural Language Processing):

      https://emnlp2017.net/

      ■CVPR (Computer Vision and PatternRecognition):

      https://cvpr2017.thecvf.com/

      ■ICCF(InternationalConferenceonComputerVision):

      https://iccv2017.thecvf.com/

      ——专业会议

      ■O’Reilly Artificial Intelligence Conference:

      https://conferences.oreilly.com/artificial-intelligence/

      ■Machine Learning Conference (MLConf):

      https://mlconf.com/

      ■AI Expo (North America, Europe, World):

      https://www.ai-expo.net/

      ■AI Summit:

      https://theaisummit.com/

      ■AI Conference:

    100T碾压CLG,Oner惊艳世界

      https://aiconference.ticketleap.com/helloworld/

      论 文

      ——arXiv.org上特定领域论文集

      ■Artificial Intelligence:

      https://arxiv.org/list/cs.AI/recent

      ■Learning (Computer Science):

      https://arxiv.org/list/cs.LG/recent

      ■Machine Learning (Stats):

      https://arxiv.org/list/stat.ML/recent

      ■NLP:

      https://arxiv.org/list/cs.CL/recent

      ■Computer Vision:

      https://arxiv.org/list/cs.CV/recent

      ——Semantic Scholar搜索结果

      ■Neural Networks (179K results):

      https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false

      ■Machine Learning (94K results):

      https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false

      ■Natural Language (62K results):

      https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false

      ■Computer Vision (55K results):

      https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false

      ■Deep Learning (24K results):

      https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false

      此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。

      https://www.arxiv-sanity.com/

      ---------------------------------------

      ImageQ:专业的大数据服务应用平台

      登录www.imageq.cn,免费申请【产品试用】

    版权声明

    本文仅代表作者乐鱼体育观点
    本文系乐鱼体育授权发表,未经许可,不得转载。

    发表评论
    标签列表